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Background and Motivation: Disorder in materials refer to the lack of inter-atomic correlations. And yet, besides in an ideal gas, locally-ordered metastable structures will occur in all materials, even in glasses.
Glasses, for example, are technologically important (e.g., IR opto-electronics, neuromorphic computation, energy conversion and storage), but our comprehension of their local structural organization and evolution,
especially at the nano-scale, is very limited. Understanding these structural features is a key for understand their local chemical potential landscape, and properties.
While capturing and controlling the formation of metastable phases is, both scientifically and technologically, critical, our mental picture about ordering in disordered materials is based on measurement tools that lack
the proper spatial resolution. Classically, the local structural order (order correlations and correlation lengths) of glasses is studied in synchrotron facilities, partly by total-scattering and pair-distribution function
(PDF) analysis. Due to spatial averaging, x-ray-based PDF, as well as other local-order probes, e.g., Raman, NMR, EXAFS, lack the required spatial resolution for detecting possible differences in the local ordering at
the nano-scale. The resolution problem is a potential origin for a critical misconception in the mental-picture of the ordering in metastable materials. Glasses, for example, are often addressed as continuous and
homogeneous, but as we will show here, once resolving their structural order with a nm-resolution probe[1], we see that this is not necessarily the case.

Pair Distribution Function (PDF) is a histogram of two particle correlation
function weighted by the particles’ scattering factors.
PDF is derived directly from total scatting measurements.
Absolute structures can be derived by fitting a PDF to a structure-based
simulated PDF. However, since amorphous structures are defined by the
distribution of local structural motifs, we use relational-PDF to follow the
changes (evolution) in local structural correlations and correlation
lengths.
Tracking changes between relational-PDF data allows us to track, most
reliably, the structural evolution of disordered materials.
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The resolution problem
Studying disordered materials with a 
synchrotron-like spatial resolution will be 
as if one is avaraging 20,000 frames of a 
“lava-lamp” movie into a single frame. 
No “bubbles” will be evident, which will 
lead to misconcetion abot the strucutral 
order of  the the laba-lamp. 
Given the fact that what we know 
about glasses is based on synchrotron-
based experiemtns: does our 
concenption about uniformity in 
glasses represents reality?
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Data-reduction pipeline to get ePDFs in a 4D-STEM experiment
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Scanning Nano-structure Electron Microscopy (SNEM) [1] methodology, which was developed specifically for this purpose. SNEM uses electron-diffraction relational-data from scanning transmission electron
diffraction (4D-STEM) measurements, which is integrated with routine synchrotron-based total-scattering analysis pipelines (corrected for electrons). Using both typical feature-extraction methods or more advance
machine-learning tools, we show how one can spatially map, and potentially follow, the formation of structural and chemical-order in disordered materials. For example, as it was shown for Ni-encapsulated,
Zr65Cu17.5Ni10Al7.5 bulk metallic glass (BMG), it was possible to learn about pre-nucleation events, and learn how emergence of local chemical ordering is correlated with the emergence of nano-sized nuclei [1].
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Structural evolution with 
relational-ePDFs every 3 
nm. Blue/green – strongly 
varying edges that are close 
to the Ni interface, and red a 
weakly-varying core.
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Based on REF [1]: Y. Rakita et al, Mapping structural heterogeneity at the nanoscale with scanning nano-structure electron microscopy (SNEM), Acta Materialia, 242, 118426 (2023)
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Quantitative evidence for local chemical order evolution

Probing 4D-STEM data
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The bright regions inside the BMG 
represent regions with nano-particle nuclei  
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Chemical Short Range Order

Blue regions refer to preference to form
Zr--X bonds

Red regions refer to preference to form Zr--Zr or X--X 
bonds

White area shows regions with a random chemical 
distribution

Short range order 
parameter:
Computes the distance 
of a distribution from a 
random chemical order. 

The NMF algorithm resolved that the principal components 
that build the ePDF relational dataset contains a component 
for each one of the three pairs :   
||   X—X   ||   Zr--Zr   ||   Zr--X   ||

The weight matrix of the NMF 
components represents the partial 
occupancy of each of the three 
pairs. 

Simulated Partial PDFePDF data fitting with partial PDFs
Zr -- Zr 14 %
Zr -- X 36 %
X -- X 50 %

Validation that the 
ePDF data can be 
represented by a 

combination of Zr-X 
pairs.

Future work: Develop an in-situ SNEM for order evolution studies in glass-
forming materials for Neuromorphic computation applications and bio-
mineralization control.
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